10,495 research outputs found

    Joint formation of bright quasars and elliptical galaxies in the young Universe

    Get PDF
    We show that the mass function of black holes expected from the past quasar activity (both visible and obscured) is consistent with the number of dormant black holes found in the bulges of nearby galaxies. The joint formation of quasars and bulges is addressed by means of an analytical model for galaxy formation, based on the hierarchical clustering of cold dark matter halos. The model is able to reproduce the main statistical properties of both populations under the hypotheses that (i) star formation and quasar shining follow an anti-hierarchical order, and (ii) galaxy morphology and final black hole mass are determined by the same physical process.Comment: 5 pages, 3 postscript figures included, proceedings of the IGRAP meeting "Clustering at high redshift", Marseille, June 199

    Chemical composition of the stellar cluster Gaia1: No surprise behind Sirius

    Get PDF
    Indexación: Web of Science; Scopus.We observed six He-clump stars of the intermediate-Age stellar cluster Gaia1 with the MIKE/Magellan spectrograph. A possible extra-galactic origin of this cluster, recently discovered thanks to the first data release of the ESA Gaia mission, has been suggested, based on its orbital parameters. Abundances for Fe, α, proton-And neutron-capture elements have been obtained. We find no evidence of intrinsic abundance spreads. The iron abundance is solar ([FeI/H] = + 0.00 ± 0.01; σ = 0.03 dex). All the other abundance ratios are generally solar-scaled, similar to the Galactic thin disk and open cluster stars of similar metallicity. The chemical composition of Gaia1 does not support an extra-galactic origin for this stellar cluster, which can be considered as a standard Galactic open cluster.https://www.aanda.org/articles/aa/abs/2017/07/aa31009-17/aa31009-17.htm

    Detection of a population gradient in the Sagittarius Stream

    Get PDF
    We present a quantitative comparison between the Horizontal Branch morphology in the core of the Sagittarius dwarf spheroidal galaxy (Sgr) and in a wide field sampling a portion of its tidal stream (Sgr Stream), located tens of kpc away from the center of the parent galaxy. We find that the Blue Horizontal Branch (BHB) stars in that part of the Stream are five times more abundant than in the Sgr core, relative to Red Clump stars. The difference in the ratio of BHB to RC stars between the two fields is significant at the 4.8 sigma level. This indicates that the old and metal-poor population of Sgr was preferentially stripped from the galaxy in past peri-Galactic passages with respect to the intermediate-age metal rich population that presently dominates the bound core of Sgr, probably due to a strong radial gradient that was settled within the galaxy before its disruption. The technique adopted in the present study allows to trace population gradients along the whole extension of the Stream.Comment: 4 pages, 3 .ps figures (fig. 1 at low resolution); Accepted for publication by A&A Letter

    A spectroscopic study of the globular Cluster NGC 4147

    Get PDF
    Indexación: Web of ScienceWe present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 +/- 0.02 and an alpha-enhancement of +0.38 +/- 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only similar to 15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.https://academic.oup.com/mnras/article-lookup/doi/10.1093/mnras/stw114

    Long-term radial-velocity variations of the Sun as a star: The HARPS view

    Get PDF
    Stellar radial velocities play a fundamental role in the discovery of extrasolar planets and the measurement of their physical parameters as well as in the study of stellar physical properties. We investigate the impact of the solar activity on the radial velocity of the Sun using the HARPS spectrograph to obtain measurements that can be directly compared with those acquired in the extrasolar planet search programs. We use the Moon, the Galilean satellites, and several asteroids as reflectors to measure the radial velocity of the Sun as a star and correlate it with disc-integrated chromospheric and magnetic indexes of solar activity that are similar to stellar activity indexes. We discuss in detail the systematic effects that affect our measurements and the methods to account for them. We find that the radial velocity of the Sun as a star is positively correlated with the level of its chromospheric activity at about 95 percent significance level. The amplitude of the long-term variation measured in the 2006-2014 period is 4.98 \pm 1.44 m/s, in good agreement with model predictions. The standard deviation of the residuals obtained by subtracting a linear best fit is 2.82 m/s and is due to the rotation of the reflecting bodies and the intrinsic variability of the Sun on timescales shorter than the activity cycle. A correlation with a lower significance is detected between the radial velocity and the mean absolute value of the line-of-sight photospheric magnetic field flux density. Our results confirm similar correlations found in other late-type main-sequence stars and provide support to the predictions of radial velocity variations induced by stellar activity based on current models.Comment: 11 pages, 7 figures, 2 tables, 1 Appendix; accepted by Astronomy and Astrophysic

    The cosmological Lithium problem outside the Galaxy: the Sagittarius globular cluster M54

    Full text link
    The cosmological Li problem is the observed discrepancy between Li abundance, A(Li), measured in Galactic dwarf, old and metal-poor stars (traditionally assumed to be equal to the initial value A(Li)_0), and that predicted by standard Big Bang Nucleosynthesis calculations (A(Li)_{BBN}). Here we attack the Li problem by considering an alternative diagnostic, namely the surface Li abundance of red giant branch stars that in a colour magnitude diagram populate the region between the completion of the first dredge-up and the red giant branch bump. We obtained high-resolution spectra with the FLAMES facility at the Very Large Telescope for a sample of red giants in the globular cluster M54, belonging to the Sagittarius dwarf galaxy. We obtain A(Li)=+0.93+-0.11 dex, translating -- after taking into account the dilution due to the dredge up-- to initial abundances (A(Li)_0) in the range 2.35--2.29 dex, depending on whether or not atomic diffusion is considered. This is the first measurement of Li in the Sagittarius galaxy and the more distant estimate of A(Li)_0 in old stars obtained so far. The A(Li)_0 estimated in M54 is lower by ~0.35 dex than A(Li)_{BBN}, hence incompatible at a level of ~3sigma. Our result shows that this discrepancy is a universal problem concerning both the Milky Way and extra-galactic systems. Either modifications of BBN calculations, or a combination of atomic diffusion plus a suitably tuned additional mixing during the main sequence, need to be invoked to solve the discrepancy.Comment: Accepted by MNRAS, 10 pages, 5 figures, 1 tabl

    How does gas cool in DM halos?

    Get PDF
    In order to study the process of cooling in dark-matter (DM) halos and assess how well simple models can represent it, we run a set of radiative SPH hydrodynamical simulations of isolated halos, with gas sitting initially in hydrostatic equilibrium within Navarro-Frenk-White (NFW) potential wells. [...] After having assessed the numerical stability of the simulations, we compare the resulting evolution of the cooled mass with the predictions of the classical cooling model of White & Frenk and of the cooling model proposed in the MORGANA code of galaxy formation. We find that the classical model predicts fractions of cooled mass which, after about two central cooling times, are about one order of magnitude smaller than those found in simulations. Although this difference decreases with time, after 8 central cooling times, when simulations are stopped, the difference still amounts to a factor of 2-3. We ascribe this difference to the lack of validity of the assumption that a mass shell takes one cooling time, as computed on the initial conditions, to cool to very low temperature. [...] The MORGANA model [...] better agrees with the cooled mass fraction found in the simulations, especially at early times, when the density profile of the cooling gas is shallow. With the addition of the simple assumption that the increase of the radius of the cooling region is counteracted by a shrinking at the sound speed, the MORGANA model is also able to reproduce for all simulations the evolution of the cooled mass fraction to within 20-50 per cent, thereby providing a substantial improvement with respect to the classical model. Finally, we provide a very simple fitting function which accurately reproduces the cooling flow for the first ~10 central cooling times. [Abridged]Comment: 15 pages, accepted by MNRA
    • …
    corecore